Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method.

نویسندگان

  • Ahad Zarghami
  • Harry E A Van den Akker
چکیده

In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model

Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...

متن کامل

Dynamic Behavior of an Oil Droplet Adhered to the Wall Surface in a Channel Flow by the Lattice Boltzmann Method

The Lattice Boltzmann Method is used to simulate the dynamics of droplet deformation in a channel flow under various conditions. The droplet behavior has been investigated under transient conditions. For cases where the droplet remains attached to the surface, the shape deformation of the droplet during crawling is captured. It has been shown that there is a limiting value for the droplet volum...

متن کامل

Four different types of a single drop dripping down a hole under gravity by lattice Boltzmann method

In this paper the dynamic of a droplet on a surface with a hole is investigated under gravitational effect by using lattice Boltzmann method. Incompressible two-phase flow with high density ratio proposed by Lee is considered. Cahn’s theory is used to observe the wettability of the surface in contact with liquid and gas phases. Several parameters such as contact angle, surface tension and gravi...

متن کامل

Axisymmetric multiphase lattice Boltzmann method for generic equations of state

We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid-gas density ratios up to 10. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation equations. We validate the model by showing that a stationary droplet obeys the Young-Laplace law...

متن کامل

Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method

Articles you may be interested in Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model Three-dimensional binary droplet collisions are studied using a multiphase cascaded lattice Boltzmann method (LBM). With this model it is possible to simulate collisions with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 95 4-1  شماره 

صفحات  -

تاریخ انتشار 2017